Effective Input Variable Selection for Function Approximation

نویسندگان

  • Luis Javier Herrera
  • Héctor Pomares
  • Ignacio Rojas
  • Michel Verleysen
  • Alberto Guillén
چکیده

Input variable selection is a key preprocess step in any I/O modelling problem. Normally, better generalization performance is obtained when unneeded parameters coming from irrelevant or redundant variables are eliminated. Information theory provides a robust theoretical framework for performing input variable selection thanks to the concept of mutual information. Nevertheless, for continuous variables, it is usually a more difficult task to determine the mutual information between the input variables and the output variable than for classification problems. This paper presents a modified approach for variable selection for continuous variables adapted from a previous approach for classification problems, making use of a mutual information estimator based on the k-nearest neighbors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Congestion estimation of router input ports in Network-on-Chip for efficient virtual allocation

Effective and congestion-aware routing is vital to the performance of network-on-chip. The efficient routing algorithm undoubtedly relies on the considered selection strategy. If the routing function returns a number of more than one permissible output ports, a selection function is exploited to choose the best output port to reduce packets latency. In this paper, we introduce a new selection s...

متن کامل

Input Variable Selection Using Parallel Processing of RBF Neural Networks

In this paper we propose a new technique focused on the selection of the important input variable for modelling complex systems of function approximation problems, in order to avoid the exponential increase in the complexity of the system that is usual when dealing with many input variables. The proposed parallel processing approach is composed of complete radial basis function neural networks ...

متن کامل

Continuous Discrete Variable Optimization of Structures Using Approximation Methods

Optimum design of structures is achieved while the design variables are continuous and discrete. To reduce the computational work involved in the optimization process, all the functions that are expensive to evaluate, are approximated. To approximate these functions, a semi quadratic function is employed. Only the diagonal terms of the Hessian matrix are used and these elements are estimated fr...

متن کامل

Fast Variable Selection by Block Addition and Block Deletion

We propose the threshold updating method for terminating variable selection and two variable selection methods. In the threshold updating method, we update the threshold value when the approximation error smaller than the current threshold value is obtained. The first variable selection method is the combination of forward selection by block addition and backward selection by block deletion. In...

متن کامل

Input Decay: Simple and Effective Soft Variable Selection

To deal with the overfitting problems that occur when there are not enough examples compared to the number of input variables in supervised learning, traditional approaches are weight decay and greedy variable selection. An alternative that has recently started to attract attention is to keep all the variables but to put more emphasis on the “most useful” ones. We introduce a new regularization...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006